一、主題:Time-varying Model Averaging via Adaptive LASSO
二、主講人:孫玉瑩,中國科學院數學與系統科學研究院助理研究員。2016年獲得中國科學院大學管理學博士學位,獲得中國科學院數學與系統科學研究院“重要科研進展獎(2017,2019)”、系統所關肇直青年研究獎,中國管理科學與工程學會優秀博士學位論文獎(2019)。長期從事經濟預測理論與方法研究,在國内外重要期刊發表論文10餘篇,包括Journal of Econometrics, Energy Economics, Quantitative Finance, China Economic Reviews,被Journal of Management Science and Engineering 邀請為Special Issue Guest Editor之一。在經濟政策分析領域也做出了多項有影響的研究工作,作為主筆撰寫政策研究報告數十篇,其中多篇得到了國家領導人的重要批示,多篇得到中辦、國辦采用;參與研究開發的客戶風險預警系統在國家開發銀行與銀監會的發揮重要作用;參與開發的經濟監測、預測、預警及政策仿真系統在國家發展和改革委員會、商務部和國家外彙管理局,支持了政府高層的科學決策,也對相關領域的研究與發展,産生了積極的作用。
三、時間:2020年11月6日(周五),上午10:00-11:30
四、地點:騰訊會議【508 739 216】
五、主持人: 彭俞超副教授,bevictor伟德官网學術交流部主任
點評人: 吳锴助理教授
六、内容簡介
Modelling and forecasting economic time series with model instability and model uncertainty is a long-standing problem. Little attention has been paid to models with time-varying combination weights in large dataset, which may be more realistic in economics. This paper proposes a new time-varying model averaging method via an adaptive LASSO to determine optimal time-varying combination weights to candidate models, thus avoiding over-fitting and yielding sparseness from a set of various potential predictive variables, simultaneously. For any fixed time point t, the asymptotic optimality and the asymptotic convergence rate of the selected weights are derived. Furthermore, the asymptotic consistency and normality of the proposed time-varying model averaging estimator are obtained. Simulation studies and empirical applications to inflation rate forecasting highlight the merits of the proposed method relative to other competing methods in the literature.