THE JOURNAL OF FINANCE· VOL. LXXI, NO. 1 · FEBRUARY 2016
學術研究摧毀了股票收益的可預測性嗎?
作者:R. David McLean, Jeffrey Pontiff
摘要:我們選取了97個被證明可以預測橫截面股票收益的變量,研究它們的樣本外和發表後收益的可預測性。樣本外和發表後組合收益分别(比樣本)低26%和58%。樣本外收益的下降是對數據挖掘效應上限的刻畫。我們估計,發表令(投資者)獲知預測因子,然後進行交易,此時收益下降了32%(58%–26%)。對于樣本内收益更高的預測因子,其發表後收益下降得更多,且高異質風險和低流動性的股票組合擁有更高的回報。預測因子組合在發表後與其他已發表預測因子組合的相關性上升。我們的發現指出,投資者從學術發表中了解到了錯誤定價信息。
關鍵詞:學術研究,股票收益,可預測性
Does Academic Research Destroy Stock Return Predictability?
R. David McLean, Jeffrey Pontiff
ABSTRACT
We study the out-of-sample and post-publication return predictability of 97 variables shown to predict cross-sectional stock returns. Portfolio returns are 26% lower out-of-sample and 58% lower post-publication. The out-of-sample decline is an upper bound estimate of data mining effects. We estimate a 32% (58%–26%) lower return from publication-informed trading. Post-publication declines are greater for predictors with higher in-sample returns, and returns are higher for portfolios concentrated in stocks with high idiosyncratic risk and low liquidity. Predictor portfolios exhibit post-publication increases in correlations with other published-predictor portfolios. Our findings suggest that investors learn about mispricing from academic publications.
Keywords: academic research, stock return, predictability
原文鍊接:http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2156623
翻譯:任兆月