一、題目:股票收益的機器學習實時預測:來自基本面信号的證據(Real-time Machine Learning for the Cross-Section of Stock Returns: Evidence From Fundamental Signals)
二、主講人:李斌,武漢大學經濟與管理學院教授
李斌,武漢大學經濟與管理學院教授、博士生導師,擔任金融系支部書記、代理主任,兼任金融科技研究中心主任。研究方向為金融科技、投資管理和機器學習等。他具備金融+科技的跨學科背景與研究能力,在《Journal of Accounting Research》、《Artificial Intelligence》、《Journal of Machine Learning Research》、《管理科學學報》、《中國工業經濟》、ICML、IJCAI等金融會計和人工智能類期刊會議上發表論文,出版英文專著一部。主持國家自然科學基金等項目,已結題自科基金青年項目後評估為特優。研究被海通證券等轉載應用,獲評中國金融學年會優秀論文二等獎等。
三、時間: 2022年4月6日星期三 上午10:00-11:30
四、地點:騰訊會議 668-584-402
五、主持人:姜富偉教授,金融工程系主任
六、内容簡介:
Recent studies document strong performance of machine learning based investment strategies. These strategies use anomaly variables discovered ex-post as predictors of stock returns and cannot be implemented in real time. We construct machine learning strategies from a “universe” of fundamental signals identified ex-ante and find that their out-of-sample performance is considerably weaker than those documented by previous studies. In addition, we find significant degradation from in-sample performance to out-of-sample performance, supporting the predictions of Martin and Nagel (2021). Overall, our results offer a more tempered view of the practical value of machine learning strategies relative to prior literature.